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We report polymorphic self-assembly of hair arranged in hollow bundles driven by capillarity,
hydrodynamics, and elasticity. Bundles emerging from a liquid bath shrink but remain hollow at slow
drainage due to the negative pressure of the menisci trapped between the hairs. The timescale allows the
collective stiffening of the fibers to resist closure. At fast drainage, the bundles fully close before the liquid
can drain through the hair. A liquid column trapped in the hole closes the bundle while the lubricated hairs
still behave softly. Scaling laws predict this reversible hair polymorphism.
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Very long aspect ratio hairs in liquid exhibit intriguing
synchronized motion and self-assembly. For instance,
the functionality of biological cilia is enabled by their
synchronized beating, large elastic deformation, and con-
stant rearrangement [1]. At the nanoscale, carbon nano-
tubes self-assemble into curious patterns during drying
[2,3]. These unusual patterns are observed when large
numbers of dense hairs rearrange due to capillarity. These
beautiful phenomena have induced scientists to study
elastocapillarity, where capillary pressure readily deforms
soft slender materials [4–6], and liquid rise in soft solids
[7,8]. Recently, interesting new phenomena were observed
when self-assembly of soft hair is driven at higher rates,
leading to polymorphic self-assembly related to hydro-
dynamics [9–11]. The rich solid-liquid phenomena at the
transition from static capillarity to hydrodynamics are
unexplored, and, more importantly, the understanding of
the timescale of the transition from slow aggregation to
synchronous beatinglike motion is absent.
Here, we study the self-assembly of wet hair that exhibits

rate-dependent self-assembly [9,10] to understand the
transition from static capillarity to hydrodynamic polymor-
phism. Hairlike carbon fibers are assembled perpendicular
to a base having a ring-shaped cross section, forming a
hollow bundle that we refer to as a “hairy-wall tube,” which
differs from a regular hair bundle by having an inner hole
[Fig. 1(a) and Movie S1 in Supplemental Material [12]].
Hair is immersed in a liquid container, and, depending on
the bundle’s diameter, height, and the drain rates as they
pierce the liquid-to-air interface, we observe two distinct
deformation modes of the hollow bundles. Bundle shrink-
age without hole closure is observed for short bundles and
slow rates, while a single radial beat leading to complete
closure occurs for long bundles and at fast rates. We had
previously observed capillary-induced twisting of hairs for

softer bundles having a smaller number of hairs and at high
speeds [10]. In the current study, we investigate a larger
range of drain rates and bundle geometries to explore the
various deformation modes as a function of hair length,
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FIG. 1. Hydrodynamic elastocapillarity-induced polymorphism
of hairy tubes. (a) Schematics of hairy tubes. R0, w, r, d, and l
correspond to the inner radius, the thickness of the tubes, fiber
radius, spacing, and length, respectively. (b) Top views of the
hairy tubes (R0 ¼ 7 mm, l ¼ 25 mm). The middle image
indicates the shape of the initial state. The left and right images
indicate the final shape of the partial closure (slow drainage,
u ¼ 0.1 mm=s) and the complete closure (fast drainage,
u¼ 20 mm=s), respectively.
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organization, liquid properties, and drain dynamics (see S1
in Ref. [12]). The coupling between capillarity, hydro-
dynamics, and elasticity leading to polymorphism has
implications on other areas of physics and materials.
We fabricate the hairy tube by inserting carbon fiber

bundles into a circular hole pattern on a base (see S2 in
Ref. [12]). Then, we submerge the hairy tubes and then
push the base out of the water using a motorized linear
stage (EAS series, Orientalmotor), as shown in Fig. 1(a).
The drainage velocity u is defined as the set speed of the
linear stage. The middle image in Fig. 1(b) shows the top
view of the immersed hairy tubes with length l and hole
radius R0. Once the tubes pierce the water interface, fibers
assemble due to surface tension. The pattern selection is set
by l, R0, and u. The same hair bundle morphs from one
geometry to another as a function of u. For short bundles
and especially in the slow-drainage regime (low u), the
holes shrink but resist full closure: The hair organization
remains as hollow tubes with dense hairs at the wall, as
shown in the left image in Fig. 1(b). We refer to this
shrinkage as partial closure. However, the holes completely
close at fast drainage (high u), as shown in the right image
in Fig. 1(b). Therefore, the interaction of bundle geometry
(elastocapillarity) and drainage hydrodynamics determines
the morphology of assembled hairs.
To explain this morphing phenomenon, we get insights by

tracking the kinematics of hole closure to plot the mean
radius of the bundle, R, as we increase the drainage distance
h, during the lowering of the water interface. Figure 2(a)
shows the experimental setup. The evolution of R is quite
different between the two cases, i.e., slow and fast drainage.
During slow drain, the hairs locally coalesce first, and the
tube wall thins before the mean diameter starts shrinking as
shown in the top images in Fig. 2(b). Initially, the outer radius
of the tube contracts while the inner radius increases [see
Fig. 2(c)]. In the later stage, both outer and inner radii of the

tubes shrink. Interestingly, in the fast-drainage conditions, the
order of the two stages flips: We observe hole closure where
the fibers move inward in a synchronized fashion before wall
thinning. The hairs also appear fully submerged during the
initial hole closure at fast drain rate as shown in the bottom
images in Fig. 2(b) and the plot in Fig. 2(d).
We schematically plot our understanding of the slow-

drainage mechanism in Fig. 3(a). This assembly is gov-
erned by balance between capillary forces in the small
menisci between fibers and the collective stiffening of the
dense fibers. The densification and fiber rearrangement
are critical to take into consideration to understand the
resistance of the bundle to full closure in the slow regime.
By considering the surface energy of annular bundles, we
show that the tangential (hoop) force Fc can be written as
Fc ∼ γh, where γ is the surface tension (see S3 in Ref. [12]
and also Ref. [13]). This force also results from the long
meniscus trapped between dense fibers in circular arrange-
ment, and the relation captures the intuitive increase in Fc
with the increase in the meniscus height h as the liquid is
drained [Fig. 3(a)]. We note that the contact angle between
the fibers and the liquid is 20°. The elastic resistance results
not only from the simple bending of individual hairs, but
also from the contact resistance and hair rearrangement
during slow drainage. We consider a fibrous array where
the fibers sequentially contact each other, and their resis-
tance increases as they densify. In this dense case, the
elastic force is Fe ∝ δ2, where δ is the hair deflection as
they come in contact during the radial shrinkage of the
hollow bundle (see S3 in Ref. [12]). In particular, as δ
increases, the thickness of the tube walls will increase,
leading to packing into a dense arch. The packing of the
fibers effectively leads to higher resistance to capillary
compression. By taking account of the reorganization
of hair in the hollow bundle and the packing effects, we
can get the final form of the elastic tangential
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FIG. 2. Evolution of tube closure. (a) Side view of hairy tubes (R0 ¼ 7 mm, l ¼ 25 mm). The ring-shaped images are captured by a
top camera. (b) Drainage distance evaluation of tube closure. Top and bottom images correspond to slow (u ¼ 0.1 mm=s) and fast
drainage (u ¼ 20 mm=s), respectively. h and R correspond to the drainage distance and the contracted radius, respectively. Movie S1
[12] shows the reversibility between partial and complete closure. (c) Fiber densification and shrinking regimes of partial closure at slow
drainage. The left side from the dashed line indicates fiber densification, and the right side indicates shrinking (partial closure).
(d) Diameter evolution during complete closure at fast drainage. Empty and filled symbols correspond to the partial and complete
closure, respectively. Orange circle markers correspond to the average radius between outer and inner radii. Upper and lower black circle
markers correspond to the outer and inner radius, respectively.
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Fe ∼ αEIR0δ
2=½rl3ðR0 − δÞ�, where E and I are the

Young’s modulus and second moment of area of a single
fiber, respectively (see S3 in Ref. [12]). The structural
coefficient α can be written as α ¼ αpwρ0=ðrρfÞ, where ρ0
and ρf are the fiber area fraction of the top surface in
the initial and final shape, respectively (see S3 in Ref. [12]).
αp is a prefactor. Please note that Fe is dependent on
stiffening and rearrangement, and, without this added
complexity, the model would incorrectly predict full
closure at any drain rate. We parametrize δh ¼ δðhÞ to
analyze the kinematics of the slow drainage as a function of
the quasistatic drain height.
The force balance Fc ∼ Fe leads to γh ∼ αEIR0δ

2
h=

½rl3ðR0 − δhÞ�. Noting the relation between the circum-
ferential and radial deflections, we define δ̄h ¼ δh=R0 as
the dimensionless radial deflection, ηh ¼ ðhlÞ1=2=lec as a
kinematic elastocapillary number, and λ ¼ l=R0 as the
aspect ratio of the hollow tubes. The length lec ¼
½EI=ðrγÞ�1=2 is the elastocapillary length balancing the
surface tension and the stiffness of a fiber [4]. The
dimensionless force balance reads ðηhλÞ2∼αδ̄h

2=ð1− δ̄hÞ,
showing the scaling between the elastocapillarity of the
hollow bundle (left) and the shrinkage (right). By solving a
quadratic equation of δ̄h, we obtain

δ̄h ∼
½ðηhλÞ4 þ 4αðηhλÞ2�1=2 − ðηhλÞ2

2α
; ð1Þ

describing the shrinkage not only as a function of the
length, but also the instantaneous drainage height through

the use of ηh. To corroborate the kinematic model,
we normalize the measured Rð¼ R0 − δhÞ by R0, which
leads to the nondimensional contracted radius R̄ ¼ 1 − δ̄h
in Fig. 3(b) according to our scaling law [Eq. (1)] in
Fig. 3(c). We observe that the experimental data for various
tube geometries (see S1 in Ref. [12]) are collapsed onto a
single master curve despite the various number of fibers,
consistent with our theory. This result highlights that, for
slow drain rates, the self-assembly is governed by static
elastocapillarity, where fiber densification and stiffening
due to rearrangement play a critical role in determining the
final morphology.
The hollow bundle fully collapses (hole closure) at fast

drainage, as shown in Fig. 4 andMovie S1 [12]. Figure 4(b)
shows the hole closure regime map by experimentally
varying the drain speed and geometry of the bundles.
Qualitatively, during fast drainage, a long liquid column,
hd ≫ hJ [see Figs. 3(a) and 4(a)], is trapped in the bundle
during the drainage and causes the full closure. This
column is governed by viscous dissipation, which takes
place at the fiber spacing d. The liquid drainage through the
fiber spacings is restricted due to large viscous stresses
within the narrow d, trapping a tall column in the bundle
hole. The negative capillary pressure within this dynamic
rise pulls the soft wall, causing it to completely close.
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FIG. 3. Capillarity-driven partial closure at slow drainage.
(a) Schematics of a side view of slow-drainage mechanism.
The drainage process goes from left to right. (b) Experimentally
measured tube radii versus drainage distance for various bundle
geometries. (c) Nondimensional R̄ versus drainage distance ηhλ,
where λ is the aspect ratio. The experimental data collapse onto a
single line when plotted against our scaling law, Eq. (1).
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FIG. 4. Hydrodynamic-driven full closure at fast drainage.
(a) Schematics of a side view of fast-drainage mechanism. The
black box corresponds to the control volume of mass conserva-
tion. The drainage process goes from left to right. (b) Regime
map of hair morphing where λ is the aspect ratio. Empty and filled
symbols correspond to the partial and complete closure, respec-
tively. (c) Universal regime map where ζ is the dimensionless
dynamic rise and ηλ is the dimensionless drainage height with
respect to lec. The black line corresponds to the transition from
partial to complete closure according to the theoretical model,
Eq. (3). According to the theoretical line, the lower and upper
regions indicate partial and complete closure, respectively. The
markers for different geometries are listed in Fig. 3(b).
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The competition between the timescales of fiber aggrega-
tion (bundle wall thinning) τa and inner diameter closure
(flopping) τ sets the transition between slow and fast
drainage (see S4 in Ref. [12]). At slow drainage, where
the viscous dissipation can be neglected, fiber aggregation
precedes inner diameter closure τa < τ versus τ < τa at a
fast drain rate.
A scaling law governs the formation of a tall liquid

column within the inner hole of the tube, leading to
complete closure, as schematically shown in Fig. 4(a).
Calculating hd as a function of drain velocity u can be used
for the scaling of the dynamic capillary force fc. The
bundles behave very softly, so the radius of the liquid
meniscus on the top of the tube, Rd, is formed obeying
Jurin’s law hd ∼ γ=ðρgRdÞ, where ρ and g are liquid density
and the gravitational acceleration, respectively [14].
Along hd, Rd generates negative pressure (see S5 in
Ref. [12]). The timescale is set when the negative pressure
pulls the bundle wall inward, generating a relative liquid
flow in the outward direction. Considering viscous resis-
tance ð∼μūfwÞ and compression ð∼Δpd2Þ at a single pore,
we can express the relative velocity ūf ∼ ðd2=μÞΔp=w,
where d is the length scale of the fluid conduit
(fiber spacing). The pressure difference Δp is induced
by capillarity and can be scaled as γ=Rd. Thus,
ūf ∼ ðd2=μÞðγ=RdÞ=w. Applying mass conservation
between vertical and radial flow, the relative radial flow
rate can be expressed as Qf ∼ ūfhdRd, and the flow rate of
the liquid column in the vertical direction is Qh ∼ uR2

d,
when it reaches the steady state. Considering the continuity
of the flows in vertical and radial directions, Qf ¼ Qh,
we get hd ∼ uRd=ūf. By using the relation ūf and
Rd ∼ γ=ðρghdÞ, we finally express hd ∼ ½γμwu=ðρgdÞ2�1=3.
Using hd, we write the dynamic capillary force as

fc ∼ ΔpAd. The capillary pressure within the column,
Δp ∼ γ=Rd, leads to the complete closure of the hollow
bundle at fast drainage. The surface area of the liquid
column in the tube scales as Ad ∼ Rdhd. Thus, the dynami-
cal compression force can be written as fc ∼ γhd. Because
the hairs do not have time to densify, they behave as a soft
noninteracting structure before the tube wall thinning, as
opposed to their collective stiffening in the slow-drainage
rate. We can express fe ∼ βR0EIδd=ðrl3Þ, where δd is the
dynamical deflection and β ¼ βpwρ0=r is a structural
coefficient of noncoalesced fibers (see S6 in Ref. [12]).
βp is a prefactor. Normalizing the force balance, fc ∼ fe,
leads to γhd ∼ βR0EIδd=ðrl3Þ and divided by R0 provides

δ̄d ∼ ðηλÞ2ζβ−1; ð2Þ

where δ̄d ¼ δd=R0 is dimensionless deflection due to
dynamic effects and η ¼ l=lec is the elastocapillary
number. We note that ηh becomes η when h reaches l.
Parameter ζ ¼ hd=l, governed by u, is the dimensionless

dynamical rise height. We found that both the static and
dynamic compression forces play a role in bundle closure.
When the water base is below the fiber base (h reaches l),
the tubes undergo further deformation δ̄, related to capil-
lary-induced fiber aggregation. We express δ̄ by replacing
ηh in Eq. (1) with η. The nondimensional contracted radius
of the final shape can be written as R̄ ¼ 1 − ðδ̄þ δ̄dÞ. When
R̄ ¼ 0, the tubes completely close, as shown in Fig. 4(a).
Combining the relation δ̄ and Eq. (2), we can provide the
scaling law of the complete closure:

ζ ∼
β

ðηλÞ2 ð1 − δ̄Þ; ð3Þ

where δ̄ is computed from Eq. (1) by replacing h with l.
The scaling law of Eq. (3) involves the dynamic rise effects
(ζ), capillary-driven deformation effects (η), and the bundle
geometry (λ). This is used to transform the regime map in
Fig. 4(b) into the universal scaling law in Fig. 4(c). The
hairy tubes completely close at high λ and u, which
correspond to long l (large flexibility) and small R0.
Even when the magnitude of the total deflection is small,
it is enough to collapse the tubes with relatively small R0.
The drain dynamics set the collective stiffness of the
bundle, making it behave softly or stiffly at fast and
slow u, respectively. The equation R̄ ¼ 1 −Ω, where
Ω ¼ δ̄þ δ̄d, is the dimensionless total deflection. The
black curve in Fig. 4(c) is obtained when δ̄þ δ̄d ¼ 1
and marks the transition between partial and complete
closure (see S7 in Ref. [12]). In the region of ζ > 1, where
u is very fast, and small ηλ, the scaling law has minor
disagreements with the experiments. On the other hand,
we confirm that these laws predict the behavior of, for
instance, liquids with much higher viscosity (see S8
in Ref. [12]).
We have presented an experimental system to study

fluid-structure interactions of dense flexible structures,
exhibiting clear transition from static-capillarity-driven to
hydrodynamic-driven assembly. This leads to polymor-
phism from open (annular) to closed bundles based on the
drain rate. The phenomenon also manifests itself in other
complex patterns such as triangular and multihole bundles
(see S9 and Movie S2 in Ref. [12]). In particular, we find
that the hairs collectively stiffen at slow drain rates to shrink
without collapse, but, at faster rates, the liquid is trapped
within the hole in the bundle and within the wall, leading to
a soft behavior and full closure. We developed universal
scaling laws to predict the kinematics of hole shrinkage
during slow drainage and the transition from partial or
complete closure, and these laws work for various liquid
viscosities. We anticipate the current work to pave the way
for developing reconfigurable shape-shifting systems
which are actuated via capillarity, such as artificial muscles
[15], soft robotics, and smart textiles.
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Supplementary Material for “Hydrodynamic elastocapillary morphing of hair

bundles”

by Jonghyun Ha, Yun Seong Kim, Kaiying Jiang, Ryan Siu, and Sameh Tawfick

S1. Twisting behavior

In addition to partial and complete closures, we can observe the twisting behavior on hairy tubes.

However, the twisting behavior appears only within a more limited range of drain speed and bundle

geometry. The drain speed range u of the previous study [10] is 6.2 – 117 mm/s, while that of the

current one is 0.1 – 100 mm/s, so the current study reaches a lower range of speeds which allow

the detailed study of partial closure. In the previous study [10], N = 138000, while N = 230000

– 400200 (varied with the hole radius R0) in the current work, indicating that the bundles in the

present study are generally stiffer than the twisting study. According to our model, the stiffness of

the bundles is proportional to the total number of fibers N , so the increase of N leads to the partial

closure, and more resistant to twisting. In our previous twisting study, we have observed two modes

of twisting having distinct kinematics [10]: (i) twisting after closure at intermediate speeds; and (ii)

twisting during closure at the highest drain speeds. We have not observed type (i) twisting in this

current study, probably due to the thicker wall geometry of the bundles. We have only observed

two instances of type (ii) twisting out of all the experiments in this study. These two instances were

observed at the tallest aspect ratio bundle and highest drain rate. We consider these two experiments

to be in the full closure regime since concurrent tube closure is observed during twisting

S2. Fabrication of hairy bundles

To fabricate these hairy tubes, we insert carbon fiber tows (yarns of straight fibers) with length

` into a circular hole pattern on a base produced by a 3D printer (Micro Plus cDLM, Envisiontec).

The depth of the holes goes throughout the base, and the hairs are fixed on the back using an adhe-

sive tape. A single carbon fiber tow is approximately 0.25 mm radius and has approximately 4600

fibers each having radius r of 2.5 µm. When we submerge the hairy tubes, the tows homogeneously

spread and fill the space of the hollow tube’s wall. This allows us to assume that the tubes have

the uniform spacing d between the fibers, as shown in Fig. S2. In the theoretical analysis, we are

mainly interested two typical spacings: d and R0. In addition to optical imaging, we have previously

confirmed by X-ray tomography that the carbon fiber tows are indistinguishable after capillary as-

sembly [9]. The spacing between the hair d varies during self-assembly due to coalescence, as well

1



as the inner radius R0 of the hollow hair assembly as shown in Fig. 1(a). In the experiment, we use

various geometries with different R0 ranging from 4 to 7 mm and ` ranging from 15 to 30 mm, but

constant thickness of the tubes, w = 3 mm consisting of three concentric circles.

S3. Kinematic models of the contracted radius in the slow drainage

S3.1. Compression force due to the surface energy of hollow bundles

We analyze the self-assembly by considering the capillary force on a single fiber due to the menisci

trapped between it and the fibers next to it Fc. This simple analysis provides an insight into the

complex behavior of the hair bundle, as evidenced by the agreement with experiments. We use

energy arguments to express the capillary hoop compression force Fc during slow drainage. Here, we

consider the stage where the fibers have already coalesced since the time scale of the fiber aggregation

is smaller than that of the inner diameter closure: τa < τ (described in S3), so that the top area of

the bundles Ar (ring area) is constant. The spacing between the fibers is smaller than their radii

d ∼ r. As the liquid surface is lowered by h, the tube shrinks by dδ = R0 − R. Note that in the

experiments, there are several circular rows of fibers and they re-arrange while they remain packed

to accommodate the diameter shrinkage while keeping the packing almost constant. Figure S3 shows

the tube shape change from state 1 to 2. We use the assumption that the bundle’s wall thickness

is small compared to the mean bundle radius for energy calculations. The surface area of the state

1 is A1 ∼ Ar + hψ0, and that of the state 2 is A2 ∼ Ar + hψ if dδ � `. We express the surface

energy difference dE ∼ γdA, where dA is the surface area difference between the state 2 and 1, so

dE ∼ −γhdψ, where dψ = ψ0−ψ. The derivative of energy can give the capillary hoop compression

force Fc = −dE/dψ, which results in Fc ∼ γh.

The capillary hoop compression force Fc can also be obtained using simple force balance ar-

guments. The tangential hoop force on a fiber sitting in the circumference of a hollow bundle is

Fc ∼ ∆pAs ∼ γ/a(hr), where ∆p is the negative pressure in the meniscus between two fibers, As

is the side area of the fiber, a is the radius of the curvature of the meniscus and scales with the

fiber radius (see Fig. S4(a)). Since a ∼ r given the contact angle between the fibers and the liquid

(θ = 20◦), hence Fc ∼ γh, which agrees with the energy argument. Next, we note that the radial

compression force is Fr ∼ γh[2 sin(φ/2)], where 2 sin(φ/2) ∼ φ for small φ (see Fig. S4(b)). Hence,

Fr ∼ γhφ. As a final note, the term φ provides the physical intuition that the radial compression

gets larger as the bundle becomes smaller, due to the effect of curvature; and the radial compression

force will vanish for very small φ in an infinitely large bundle diameter, compared to the fiber radius.

2



S3.2. Elastic force within the walls of hollow bundles

Densification effects: The elastic deflection of a single soft fiber follows the linear bending moment

equation Fb` ∼ EIδ/`2 under the effect of a force Fb, as shown in Fig. S5(a). However, to capture the

behavior of the observed elastocapillary phenomena which involve densification and self-organization,

we found that the simple law is not sufficient. The situation can be qualitatively different when

we consider multiple hairs having spacing d, which progressively come into contact as shown in

Fig. S5(b). We show the different situations of elastic deflection in Fig.S5(a) and (b) for a single fiber

and a fiber array, respectively. The number of fibers is n, which is taken here to be in the tangential

direction along the circumference. Applying a large enough force Fm leads to fiber densification by

eliminating d so that the total deflection δ may be written as δ ∼ nd. To obtain the force law of

fiber array, we sum the individual fiber deflection:

Fm =
EI

`2

[
δ +

n−1∑
i=1

(δ − id)

]
, (S1)

Expanding Eq. (S1) yields

Fm ∼ EI

`2

[
δn+ d

n(n− 1)

2

]
, (S2)

Based on the relation n ∼ δ/d, Eq. (S2) becomes Fm ∼ EIδ2/(d`3) when n� 1 and using n ∼ d/δ.

It follows a quadratic force law in the positive direction (we here consider compression only) [9, 10].

The initial configuration consists of uniformly coalesced hairs. We consider the ring shape as

a stacked fiber array by virtually unfolding the structure, as illustrated in Fig. S5(c). Then, the

deformation of the shrinkage of the tube is similar to the contraction of the fiber array, obeying

quadratic force law, but includes fiber re-arrangement. For a single row of stacked fiber array, we

can express the elastic force, Fes ∼ EIδ2/(r`3) where we replace d of Fm with r of Fes (see Fig. S5(b)

and (c)). Summing the individual Fes of the array for which the number of rows is approximately ne

provides the total hoop elastic force Fe ∼ neFes.

Re-arrangement effects: To express the relation of ne, we derive the elastic force scaling origi-

nating from fiber re-arrangement. The total number of fibers can be written as N ∼ ρ0R0w/r
2,

where ρ0 is the initial area fraction of fibers. Figure S6(a) shows the experimentally measured ρ0 in

various λ = `/R0. Considering the geometry of ring shape (top surface of the hairy tube), the area

occupied by the fibers, Af ∼ Nr2, is identical to the area of fibers occupying the ring, Ar ∼ nerRρf ,

where ρf is the area fraction of fibers in the final shape. We experimentally observe that ρf is

constant (see Fig. S6(b)), and we attribute this to random granular-like packing. Comparing be-

tween Af and Ar, leads to Nr2 ∼ nerRρf , we obtain ne ∼ Nr/(Rρf). Replacing N with ρ0R0w/r
2
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and R with R0 − δ in ne relation yields ne ∼ R0wρ0/[rρf(R0 − δ)]. Thus, Fe can be written as

Fe ∼ neFes ∼ αEIR0δ
2/[r`3(R0 − δ)], where α = αpwρ0/(rρf) is the structural coefficient. We have

a prefactor αp to predict the deformation trend precisely, and αp = 5 in Fig. 3(d).

S4. Competition between time scales

The competition between the time scales of fiber aggregation (bundle wall thinning), τa, and inner

diameter closure (flopping), τ , provides insights into the transition of behavior between the slow and

fast drainage.

Time scale of fiber aggregation (bundle wall thinning), τa: The dynamics of the fiber aggregation

plays an important role in the rate at which the liquid is squeezed out while the fibers are coalescing.

One can imagine a wet bundle initially containing liquid between the fiber spacing, where the liquid is

squeezed out during a time scale τa by capillary induced shrinkage (wall thinning), as shown in Fig. S7.

Considering volume continuity, the aggregation speed of tube volume, ẇ`R0, is the same magnitude

with the drainage-induced liquid flow, udwR0, which gives the characteristic velocity within the fiber

spacing, ud ∼ ẇ`/w. Next, the capillary and viscous energy rate can be written as Ėc ∼ γ`ẇ, and

Ėv ∼ µu2dw`/d, respectively, so ud ∼ [ẇγd/(µw)]1/2. Combining the foregoing relations, ud ∼ ẇ`/w,

and ud ∼ [ẇγd/(µw)]1/2, we obtain the characteristic speed of fiber aggregation ẇ ∼ γdw/(µ`2).

Consequently, the time scale of fiber aggregation can be scaled as τa ∼ w/ẇ ∼ µ`2/(γd). The typical

value of the aggregation time scale of water in our bundles is τa ≈ 1.6 s when ` = 20 mm.

Time scale of inner diameter closure (flopping), τ : At fast drainage, the flow rate of the liquid

column in the vertical direction is Qh ∼ uR2
d. Considering the volume of the liquid column, V ∼

hdR
2
d, the time scale of the vertical drainage in the internal hole of the bundle can be expressed as τh ∼

V/Qh ∼ hd/u. By using the relation hd ∼ [γµu/(ρgd)2]1/3, we obtain τh ∼ [γµw/(ρgd)2]1/3u−2/3.

As the inner diameter closes (flopping), a relative radial flow develops and can be expressed as

Qf ∼ ūfAd, where Ad ∼ hdRd is the surface area of the internal bundle hole. Considering V ∼ hdR
2
d,

the time scale of this closure can be scaled as τf ∼ V/Qf ∼ Rd/ūf . The continuity Qf = Qh leads

to ūf ∼ uRd/hd, allows us to write τf ∼ hd/u ∼ τh. Therefore, we can express the time scale of the

closure of the bundle wall as τ without subscript: τ ∼ [γµw/(ρgd)2]1/3u−2/3. The typical values of

the closure time scales of water are τ ≈ 12 s when u = 0.1 mm/s for slow drainage, and τ ≈ 0.1 s

when u = 100 mm/s for fast drainage.

Fiber aggregation precedes inner diameter closure at slow drain rate: τa < τ where τa ≈ 1.6 s and

τ ≈ 12 s, as shown in the top images of Fig. 2(b). However, at fast drain rate, hd is large, and the
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bundle fully closes before the fiber aggregation: τ < τa where τ ≈ 0.1 s and τa ≈ 1.6 s, as confirmed

in the experimental measurements in the bottom images of Fig. 2(b).

S5. Pressure gradient of the liquid column

At the fast drainage, we indicate the existence of two stages at high drain rate. Stage I: During the

motion of the stage (see Fig. S8(a)), a tall hd develops and the liquid column has negative capillary

pressure leading to the closure of the bundle. Stage II: The motion stops and the internal pressure

turns positive, additional drainage with velocity ūf takes place (see Fig. S8(b)). Our model focuses

on Stage I where the negative pressure builds up along the dynamical rise height hd, as shown in

Fig. S8(a). The bundles behave very softly, so the radius of the liquid meniscus on the top of the

tube, Rd, is formed obeying Jurin’s law hd ∼ γ/(ρgRd), and generates negative pressure along hd.

The time scale is set when the negative pressure pulls the bundle wall inward generating a relative

(viscous) liquid flow in the outward direction.

S6. Dynamic structural coefficient β

Liquid drainage is strongly resisted within the fiber spacings in the bundle’s wall due to the

high viscous stress in the fast drainage regime. The tubes behave “softly” as individual, not as

densely packed and re-arranging fiber arrays. The elastic deformation of the hairy tube follows

the linear force law, fes ∼ EIδd/`
3, so fe is linearly proportional to δd of fibers with N numbers:

fe ∼ Nfes ∼ NEIδd/`
3. By using N ∼ ρ0R0w/r

2 in S2.2, we can rewrite

fe ∼ β
R0EI

r`3
δd, (S3)

where β = βpwρ0/r is a dynamic structural coefficient. We have a prefactor βp to predict the mor-

phing behavior trend precisely. The theoretical line in Fig. 4(c) is for βp = 3.5.

S7. Transition from partial to complete closure of hollow bundles

The foregoing scaling laws allow us to predict the transition of morphing trend between partial

and complete closures. We use a dimensionless equation R̄ = 1 − Ω, where Ω = δ̄ + δ̄d is the di-

mensionless total deflection. We plot R of the inset of Fig. S9 according to our scaling law to find

the scattered data collapse together in Fig. S9. We vary the coefficients of Ω to fit the experimental

data. The representative tube radius of our model is a mean radius between the inner and outer

radii of the tubes, so the contracted radius never becomes zero even the tubes completely close. We
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note that the majority of experimental data of complete closure (filled symbols) are concentrated on

R̄ ≈ 0.2. After complete closure of tubes, R̄ remains constant at 0.2 despite an increase in Ω.

S8. Effect of liquid viscosity

To investigate how the properties of liquids influence on the dynamic capillary morphing, we

repeat our experiments with ethylene glycol, instead of water. At slow drainage, δ will be increased

as increasing γ (decreasing R), since the compression force is driven by surface tension. At fast

drainage, however, δd will be increased as increasing not only γ, but also µ (behaving complete

closure), since high viscous liquids increase hd, leading to strong capillary compression at the hole:

fc ∼ γhd. As shown in Fig. S10(a), our kinematic model appropriately describes the effects of liquid

properties. Furthermore, Fig. S10(b) shows that our model still captures the morphing behavior

well, even changing the liquid properties.

S9. Morphing behavior of partial/complete closure in other geometries

More complex and intriguing morphing behavior of partial/complete hole closure can be observed

in other bundle geometries. We fabricate triangular bundles separated by a triangular hole, as shown

in Movie S2 and Fig. S11(a). Similar to the experiments in the main text, they morph their shape in

two distinct modes induced by dynamic capillarity. Next, we fabricate six triangular bundles which

include three triangular holes, as shown in Movie S2 and Fig. S11(b). Using the same type of con-

trolled experiments, we show that the dynamics dictate interesting pattern selection. The bundles

can form three holes (at lowest drain rate), or collapse the holes into a closed shape (at the highest

rate). We note that the hair also transforms the geometry of the internal bundle’s holes at slow

drain. This pattern transformation can be explained by peculiar hair re-arrangement that will go

beyond the scope of the current letter. Finally, we show that the morphing of hollow bundles can be

triggered by a needle inserted into the bundle instead of moving into and out of reservoir, as shown

in Fig. S11(c). Please note that the drain dynamics is controlled by a syringe pump, not a linear

stage. This system is useful in more practical engineering applications.
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FIG. S1: The top view images of the final shape in the slow drainage (partial closure). At R0 ≤ 5

mm and ` = 30 mm, which is the extreme cases (small R0, long `), the bundle is unstable. At the

last, the tube with R0 = 4 mm and ` = 30 mm always collapses even at the slow drainage.
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FIG. S2: Model approximation. The geometry of the hairy tube is considered from the left to the

right side.
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FIG. S4: Compression of fiber clusters due to capillarity. (a) Capillary force between contacting two

fibers. Inset shows the top view of the liquid meniscus. (b) Force in radial direction. Inset shows

free body diagram of a single fiber.
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FIG. S6: The measurement of area fraction of fibers. (a) Initial area fraction ρ0 versus aspect ratio

λ = `/R0. The dashed line corresponds to the average ρ0 = 0.05 ± 0.01. (b) Final area fraction of

final shape ρf versus drain velocity u. The dashed line corresponds to the average ρf = 0.33 ± 0.05.

Empty and filled symbols correspond to the partial and complete closure, respectively. The symbols

for different geometry are listed in Fig. 3(b).
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FIG. S9: Tube closure with dynamic effects. The black lines indicate theoretically predicted deflection

curves R̄ ∼ 1 + CΩ with constant C = 1, 0.7, and 0.5. Empty and filled symbols correspond to the

partial and complete closure, respectively. Inset: Experimental data of R with respect to u. The

symbols for different geometry are listed in Fig. 3(b).
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FIG. S10: Effects of liquid properties. (a) Kinematic contraction of the tube radius at slow drainage.

(b) Regime map of morphing behavior. Black and orange colors correspond to ethylene glycol

(ρ = 1112 kg/m3, µ = 0.018 Pa·s, γ = 0.048 N/m) and water (ρ = 998 kg/m3, µ = 0.001 Pa·s,

γ = 0.072 N/m), respectively. Empty and filled symbols correspond to the partial and complete

closure, respectively. The sample geometry is R0 = 7 mm and ` = 25 mm.
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FIG. S11: Dynamic capillary morphing in more complex patterns. (a) Fractal structures with a

triangular hole. The length of carbon fibers is 17 mm. Drainage velocities of the slow and fast cases

are 0.6 and 60 mm/s, respectively. (b) Fractal pattern with three holes. The length of carbon fibers

is 25 mm. Drainage velocities of the slow and fast cases are 10 and 310 mm/s, respectively. (c)

Hollow bundles morphing using a droplet supplied by a syringe pump. The syringe pump ejects and

retracts a droplet at the center of the bundle. The flow rates of the slow and fast cases are 0.1 and

3 ml/min, respectively. Left: experimental images. Right: schematics.
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Movie S1. Capillary morphing of hollow bundles at slow rate followed by fast rate followed by slow

rate. Tow view (left) and side view (right)

Movie S2. Capillary morphing of fractal geometry at slow rate and high rate. The video shows two

experiments on different bundle geometries.
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